SHARMAN'S BRANCH

REACH # 3

(POOL CROSS-SECTION)

4/24/2012

Copyright © 2012 Wildland Hydrology

STATION (ft+)

30 40 50 60

49

99

98

97

96

95

94

93

92

ELEVATION (ft)

2.4

BF-WS = 2.4

WSE

BANKFULL

d = 3.02'

A = 99 ft²

WID = 11.3
<table>
<thead>
<tr>
<th>Station</th>
<th>Elevation</th>
<th>B</th>
<th>S</th>
<th>H</th>
<th>FS</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.63</td>
<td>20.5</td>
<td>31</td>
<td>11</td>
<td>11</td>
<td>112</td>
<td>Z.24'</td>
</tr>
<tr>
<td>10.68</td>
<td>20.5</td>
<td>31</td>
<td>11</td>
<td>11</td>
<td>112</td>
<td>Z.24'</td>
</tr>
<tr>
<td>10.73</td>
<td>20.5</td>
<td>31</td>
<td>11</td>
<td>11</td>
<td>112</td>
<td>Z.24'</td>
</tr>
<tr>
<td>10.78</td>
<td>20.5</td>
<td>31</td>
<td>11</td>
<td>11</td>
<td>112</td>
<td>Z.24'</td>
</tr>
<tr>
<td>10.83</td>
<td>20.5</td>
<td>31</td>
<td>11</td>
<td>11</td>
<td>112</td>
<td>Z.24'</td>
</tr>
<tr>
<td>10.88</td>
<td>20.5</td>
<td>31</td>
<td>11</td>
<td>11</td>
<td>112</td>
<td>Z.24'</td>
</tr>
<tr>
<td>11.30</td>
<td>22.6</td>
<td>31</td>
<td>11</td>
<td>11</td>
<td>112</td>
<td>Z.24'</td>
</tr>
<tr>
<td>11.35</td>
<td>22.6</td>
<td>31</td>
<td>11</td>
<td>11</td>
<td>112</td>
<td>Z.24'</td>
</tr>
<tr>
<td>11.40</td>
<td>22.6</td>
<td>31</td>
<td>11</td>
<td>11</td>
<td>112</td>
<td>Z.24'</td>
</tr>
<tr>
<td>11.45</td>
<td>22.6</td>
<td>31</td>
<td>11</td>
<td>11</td>
<td>112</td>
<td>Z.24'</td>
</tr>
<tr>
<td>11.50</td>
<td>22.6</td>
<td>31</td>
<td>11</td>
<td>11</td>
<td>112</td>
<td>Z.24'</td>
</tr>
<tr>
<td>11.55</td>
<td>22.6</td>
<td>31</td>
<td>11</td>
<td>11</td>
<td>112</td>
<td>Z.24'</td>
</tr>
<tr>
<td>11.60</td>
<td>22.6</td>
<td>31</td>
<td>11</td>
<td>11</td>
<td>112</td>
<td>Z.24'</td>
</tr>
</tbody>
</table>

Notes: Comments:
<table>
<thead>
<tr>
<th>的时间</th>
<th>站点</th>
<th>值</th>
<th>日期</th>
</tr>
</thead>
<tbody>
<tr>
<td>11月7日 100.17</td>
<td>11月7日 100.13</td>
<td>11月7日 100.27</td>
<td>11月7日 100.8</td>
</tr>
<tr>
<td>11月7日 100.47</td>
<td>11月7日 100.39</td>
<td>11月7日 100.75</td>
<td>11月7日 100.16</td>
</tr>
<tr>
<td>11月7日 100.4</td>
<td>11月7日 100.39</td>
<td>11月7日 100.75</td>
<td>11月7日 100.16</td>
</tr>
<tr>
<td>11月7日 100.47</td>
<td>11月7日 100.4</td>
<td>11月7日 100.39</td>
<td>11月7日 100.75</td>
</tr>
<tr>
<td>11月7日 100.8</td>
<td>11月7日 100.6</td>
<td>11月7日 100.39</td>
<td>11月7日 100.75</td>
</tr>
<tr>
<td>11月7日 100.17</td>
<td>11月7日 100.13</td>
<td>11月7日 100.27</td>
<td>11月7日 100.8</td>
</tr>
</tbody>
</table>

Survey Data

- **Surveyor:** Shumann's Branch
- **Date:** 11/20/12
- **Site:** Cross-Section

Note: The table and diagram are part of the Survey Data section, documenting measurements and observations related to the survey.
Sherman's Branch - Reach 3
Step Cross-Section
Station 69

4/24/12

Copyright © 2012 Wildland Hydrology

Width @ Bank = 33 ft
Dike @ Bank = 1.27 ft
A @ Bank = 41.85 ft2
W/D = 20.02

W/D = 20.02

Horizontal Distance (ft)
Bank Full = 1.9 ft

Wide at left = 33 ft
Dike at left was not measured based on revised bank fill.
Site: Sharmann's Branch

Location: Reach 3 (Pebble Ch.) HUC:

<table>
<thead>
<tr>
<th>Inches</th>
<th>PARTICLE</th>
<th>Millimeters</th>
<th>RIFFLE:</th>
<th>POOL:</th>
<th>COMP:</th>
<th>Date:</th>
<th>TOT #</th>
<th>ITEM %</th>
<th>% CUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silt / Clay</td>
<td>< .062</td>
<td>.062 - .125</td>
<td>.125 - .25</td>
<td>.25 - .50</td>
<td>.50 - 1.0</td>
<td>4/24/12</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Very Fine</td>
<td>.062 - .125</td>
<td>1.0 - 2</td>
<td>2 - 4</td>
<td>4 - 5.7</td>
<td>5.7 - 8</td>
<td>4/24/12</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Fine</td>
<td>.125 - .25</td>
<td>2 - 4</td>
<td>2 - 4</td>
<td>2 - 4</td>
<td>2 - 4</td>
<td>4/24/12</td>
<td>2</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Medium</td>
<td>.25 - .50</td>
<td>3 - 3</td>
<td>3 - 3</td>
<td>3 - 3</td>
<td>3 - 3</td>
<td>4/24/12</td>
<td>4</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>Coarse</td>
<td>.50 - 1.0</td>
<td>3 - 3</td>
<td>3 - 3</td>
<td>3 - 3</td>
<td>3 - 3</td>
<td>4/24/12</td>
<td>7</td>
<td>7</td>
<td>29</td>
</tr>
<tr>
<td>.04 - .08</td>
<td>Very Coarse</td>
<td>1.0 - 2</td>
<td>1.0 - 2</td>
<td>1.0 - 2</td>
<td>1.0 - 2</td>
<td>4/24/12</td>
<td>9</td>
<td>9</td>
<td>38</td>
</tr>
<tr>
<td>.08 - .16</td>
<td>Very Coarse</td>
<td>32 - 45</td>
<td>32 - 45</td>
<td>32 - 45</td>
<td>32 - 45</td>
<td>4/24/12</td>
<td>18</td>
<td>18</td>
<td>56</td>
</tr>
<tr>
<td>.16 - .22</td>
<td>Coarse</td>
<td>22.6 - 32</td>
<td>22.6 - 32</td>
<td>22.6 - 32</td>
<td>22.6 - 32</td>
<td>4/24/12</td>
<td>12</td>
<td>12</td>
<td>68</td>
</tr>
<tr>
<td>.22 - .31</td>
<td>Coarse</td>
<td>32 - 45</td>
<td>32 - 45</td>
<td>32 - 45</td>
<td>32 - 45</td>
<td>4/24/12</td>
<td>18</td>
<td>18</td>
<td>56</td>
</tr>
<tr>
<td>.31 - .44</td>
<td>Coarse</td>
<td>22.6 - 32</td>
<td>22.6 - 32</td>
<td>22.6 - 32</td>
<td>22.6 - 32</td>
<td>4/24/12</td>
<td>12</td>
<td>12</td>
<td>68</td>
</tr>
<tr>
<td>.44 - .63</td>
<td>Coarse</td>
<td>32 - 45</td>
<td>32 - 45</td>
<td>32 - 45</td>
<td>32 - 45</td>
<td>4/24/12</td>
<td>18</td>
<td>18</td>
<td>56</td>
</tr>
<tr>
<td>.63 - .89</td>
<td>Coarse</td>
<td>22.6 - 32</td>
<td>22.6 - 32</td>
<td>22.6 - 32</td>
<td>22.6 - 32</td>
<td>4/24/12</td>
<td>12</td>
<td>12</td>
<td>68</td>
</tr>
<tr>
<td>.89 - 1.3</td>
<td>Coarse</td>
<td>22.6 - 32</td>
<td>22.6 - 32</td>
<td>22.6 - 32</td>
<td>22.6 - 32</td>
<td>4/24/12</td>
<td>18</td>
<td>18</td>
<td>56</td>
</tr>
<tr>
<td>1.3 - 1.8</td>
<td>Coarse</td>
<td>32 - 45</td>
<td>32 - 45</td>
<td>32 - 45</td>
<td>32 - 45</td>
<td>4/24/12</td>
<td>12</td>
<td>12</td>
<td>68</td>
</tr>
<tr>
<td>1.8 - 2.5</td>
<td>Coarse</td>
<td>45 - 64</td>
<td>45 - 64</td>
<td>45 - 64</td>
<td>45 - 64</td>
<td>4/24/12</td>
<td>18</td>
<td>18</td>
<td>56</td>
</tr>
<tr>
<td>2.5 - 3.5</td>
<td>Small</td>
<td>64 - 90</td>
<td>64 - 90</td>
<td>64 - 90</td>
<td>64 - 90</td>
<td>4/24/12</td>
<td>12</td>
<td>12</td>
<td>68</td>
</tr>
<tr>
<td>3.5 - 5.0</td>
<td>Small</td>
<td>90 - 128</td>
<td>90 - 128</td>
<td>90 - 128</td>
<td>90 - 128</td>
<td>4/24/12</td>
<td>18</td>
<td>18</td>
<td>56</td>
</tr>
<tr>
<td>5.0 - 7.1</td>
<td>Large</td>
<td>128 - 180</td>
<td>128 - 180</td>
<td>128 - 180</td>
<td>128 - 180</td>
<td>4/24/12</td>
<td>12</td>
<td>12</td>
<td>68</td>
</tr>
<tr>
<td>7.1 - 10.1</td>
<td>Large</td>
<td>180 - 256</td>
<td>180 - 256</td>
<td>180 - 256</td>
<td>180 - 256</td>
<td>4/24/12</td>
<td>18</td>
<td>18</td>
<td>56</td>
</tr>
<tr>
<td>10.1 - 14.3</td>
<td>Small</td>
<td>256 - 362</td>
<td>256 - 362</td>
<td>256 - 362</td>
<td>256 - 362</td>
<td>4/24/12</td>
<td>12</td>
<td>12</td>
<td>68</td>
</tr>
<tr>
<td>20 - 40</td>
<td>Medium</td>
<td>512 - 1024</td>
<td>512 - 1024</td>
<td>512 - 1024</td>
<td>512 - 1024</td>
<td>4/24/12</td>
<td>12</td>
<td>12</td>
<td>68</td>
</tr>
<tr>
<td>40 - 60</td>
<td>Large-Vly Large</td>
<td>1024 - 2048</td>
<td>1024 - 2048</td>
<td>1024 - 2048</td>
<td>1024 - 2048</td>
<td>4/24/12</td>
<td>18</td>
<td>18</td>
<td>56</td>
</tr>
</tbody>
</table>

Bedrock

TOTAL: 100

Stream Type:

Valley Type:
<table>
<thead>
<tr>
<th>Inches</th>
<th>PARTICLE</th>
<th>Millimeters</th>
<th>RIFFLE</th>
<th>POOL</th>
<th>COMP. S/C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fine</td>
<td>.125 - .25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.04 - .08</td>
<td>Very Coarse</td>
<td>1.0 - 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.08 - .16</td>
<td>Very Fine</td>
<td>2 - 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.16 - .22</td>
<td>Fine</td>
<td>4 - 5.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.22 - .31</td>
<td>Fine</td>
<td>5.7 - 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.31 - .44</td>
<td>Medium</td>
<td>8 - 11.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.44 - .63</td>
<td>Medium</td>
<td>11.3 - 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.63 - .89</td>
<td>Coarse</td>
<td>16 - 22.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.89 - 1.3</td>
<td>Coarse</td>
<td>22.6 - 32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3 - 1.8</td>
<td>Very Coarse</td>
<td>32 - 45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8 - 2.5</td>
<td>Very Coarse</td>
<td>45 - 64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5 - 3.5</td>
<td>Small</td>
<td>64 - 90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5 - 5.0</td>
<td>Small</td>
<td>90 - 128</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0 - 7.1</td>
<td>Large</td>
<td>128 - 180</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1 - 10.1</td>
<td>Large</td>
<td>180 - 256</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1 - 14.3</td>
<td>Small</td>
<td>256 - 362</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.3 - 20</td>
<td>Small</td>
<td>362 - 512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 - 40</td>
<td>Medium</td>
<td>512 - 1024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 - 80</td>
<td>Large-Vey Large</td>
<td>1024 - 2048</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bedrock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stream Type: | Valley Type: | TOTAL: 60 | 40 | 100 |

Site: Sharman's Branch | Date: 4-24-2012 | RIFFLE (1) | Pool (2) | Composite (3) |
Party: Team 3 | | Date: 4/24/12 | Date: 4/24/12 | Date: 4/24/12 |

DOT Count for

<table>
<thead>
<tr>
<th>RIFFLE</th>
<th>POOL</th>
<th>COMP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOT #</td>
<td>ITEM %</td>
<td>% Cum</td>
</tr>
<tr>
<td>1</td>
<td>2.5</td>
<td>75%</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>100%</td>
</tr>
</tbody>
</table>

Copyright © 2012 Wetland Hydrology
LOCATION: Sharmon's Branch
PEBBLE COUNT DATA
REACH: Reach 3 (Pit'nunim Method) PARTY: Team 3
Stream Type: Valley Type: HUC:

% CUMULATIVE (Finer Than)

PARTICLE SIZE - Millimeters

Copyright © 2012 Midland Hydrology
<table>
<thead>
<tr>
<th>Inches</th>
<th>PARTICLE</th>
<th>プレート</th>
<th>Millimeters</th>
<th>Silt / Clay</th>
<th>< .062</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Very Fine</td>
<td>RIFFLE</td>
<td>1</td>
<td>.062 - 125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fine</td>
<td>POOL</td>
<td>2</td>
<td>.125 - .25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>COMP.</td>
<td>3</td>
<td>.25 - .50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coarse</td>
<td></td>
<td></td>
<td>.50 - 1.0</td>
<td></td>
</tr>
<tr>
<td>.04 - .08</td>
<td>Very Coarse</td>
<td></td>
<td></td>
<td>1.0 - 2</td>
<td></td>
</tr>
<tr>
<td>.08 - .16</td>
<td>Very Fine</td>
<td></td>
<td></td>
<td>2 - 4</td>
<td></td>
</tr>
<tr>
<td>.16 - .22</td>
<td>Fine</td>
<td></td>
<td></td>
<td>4 - 5.7</td>
<td></td>
</tr>
<tr>
<td>.22 - .31</td>
<td>Fine</td>
<td></td>
<td></td>
<td>5.7 - 8</td>
<td></td>
</tr>
<tr>
<td>.31 - .44</td>
<td>Medium</td>
<td></td>
<td></td>
<td>8 - 11.3</td>
<td></td>
</tr>
<tr>
<td>.44 - .63</td>
<td>Medium</td>
<td></td>
<td></td>
<td>11.3 - 16</td>
<td></td>
</tr>
<tr>
<td>.63 - .89</td>
<td>Coarse</td>
<td></td>
<td></td>
<td>16 - 22.6</td>
<td></td>
</tr>
<tr>
<td>.89 - 1.3</td>
<td>Coarse</td>
<td></td>
<td></td>
<td>22.6 - 32</td>
<td></td>
</tr>
<tr>
<td>1.3 - 1.8</td>
<td>Very Coarse</td>
<td></td>
<td></td>
<td>32 - 45</td>
<td></td>
</tr>
<tr>
<td>1.8 - 2.5</td>
<td>Very Coarse</td>
<td></td>
<td></td>
<td>45 - 64</td>
<td></td>
</tr>
<tr>
<td>2.5 - 3.5</td>
<td>Small</td>
<td></td>
<td></td>
<td>64 - 90</td>
<td></td>
</tr>
<tr>
<td>3.5 - 5.0</td>
<td>Small</td>
<td></td>
<td></td>
<td>90 - 128</td>
<td></td>
</tr>
<tr>
<td>5.0 - 7.1</td>
<td>Large</td>
<td></td>
<td></td>
<td>128 - 180</td>
<td></td>
</tr>
<tr>
<td>7.1 - 10.1</td>
<td>Large</td>
<td></td>
<td></td>
<td>180 - 256</td>
<td></td>
</tr>
<tr>
<td>10.1 - 14.3</td>
<td>Small</td>
<td></td>
<td></td>
<td>256 - 362</td>
<td></td>
</tr>
<tr>
<td>14.3 - 20</td>
<td>Small</td>
<td></td>
<td></td>
<td>362 - 512</td>
<td></td>
</tr>
<tr>
<td>20 - 40</td>
<td>Medium</td>
<td></td>
<td></td>
<td>512 - 1024</td>
<td></td>
</tr>
<tr>
<td>40 - 80</td>
<td>Large-Very Large</td>
<td></td>
<td></td>
<td>1024 - 2048</td>
<td></td>
</tr>
</tbody>
</table>

Stream Type:

Valley Type:

TOTAL = 100
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Other Methods (Key: Density, Wave Height, Curve C)</td>
<td></td>
</tr>
<tr>
<td>4. Continuity Equation (b) \text{ Regional Curves} \quad n = \frac{Q}{A} \quad V = \frac{Q}{A} \quad R = \frac{Q}{A} \quad H = \frac{Q}{A} \quad W = \frac{Q}{A} \quad P = \frac{Q}{A} \quad A = \frac{Q}{A} \quad W = \frac{Q}{A} \quad A = \frac{Q}{A}</td>
<td></td>
</tr>
<tr>
<td>5. Roughness Coefficient: (K = \text{Constant})</td>
<td></td>
</tr>
<tr>
<td>6. Manning's n (Stream Type: Fr. D-30)</td>
<td></td>
</tr>
<tr>
<td>7. Roughness Coefficient: (K = \text{Constant})</td>
<td></td>
</tr>
<tr>
<td>8. Roughness Coefficient: (K = \text{Constant})</td>
<td></td>
</tr>
<tr>
<td>9. Froude Number</td>
<td></td>
</tr>
<tr>
<td>10. Receiver</td>
<td></td>
</tr>
<tr>
<td>11. Receiver</td>
<td></td>
</tr>
<tr>
<td>12. Receiver</td>
<td></td>
</tr>
<tr>
<td>13. Receiver</td>
<td></td>
</tr>
<tr>
<td>14. Receiver</td>
<td></td>
</tr>
</tbody>
</table>

Worksheet B-2: Computations of Velocity and Discharge using Various Methods

First Field Day Instructions & Forms

River Morphology & Applications
Figure B.2

See Classification Key

Type Stream

- Channel Sinuosity (h)
- Water Surface Slope (s)
- Channel Materials (Particle Size Index) (D₅₀)
- Entrenchment Ratio (b)
- Width of Flood-Plain Area (Wₚ)
- Water Depth at Mean Depth (Dₚ)
- Bankfull Width divided by Bankfull Mean Depth in Right section (Wₛ/Dₚ)
- Bankfull X-Section Area (Aₛ)
- Bankfull Depth (Dₛ)
- Width of the Stream Channel at Bankfull Stage Elevation in Right section (Wₛ)
- Drainage Area: 3.6 mi²
- Location: Rea Creek
- Basin: Powhatan
- Stream: 2643, 2644, 2645

Worksheet B.1: Field Form for Level II Stream Classification (First Field Day)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valley Type:</td>
<td>Jurassic</td>
</tr>
<tr>
<td>Date:</td>
<td>7/14/19</td>
</tr>
<tr>
<td>Cross-Section Number (La/Long):</td>
<td>1</td>
</tr>
<tr>
<td>Temporary Guard:</td>
<td>Virginia Co. 60</td>
</tr>
<tr>
<td>Location:</td>
<td>Rea Creek</td>
</tr>
<tr>
<td>Drainage Area:</td>
<td>3.6 mi²</td>
</tr>
<tr>
<td>Stream:</td>
<td>2643, 2644, 2645</td>
</tr>
</tbody>
</table>

Copyrigh © 2012 Wildland Hydrology
Glide Dimensions

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Check motor area to glide area (ft²)</td>
</tr>
<tr>
<td>2</td>
<td>Check motor area to glide depth (ft)</td>
</tr>
<tr>
<td>3</td>
<td>Check motor area to glide width (W ft)</td>
</tr>
<tr>
<td>4</td>
<td>Check motor area to glide width (W² ft²)</td>
</tr>
<tr>
<td>5</td>
<td>Check motor area to glide width (W³ ft³)</td>
</tr>
</tbody>
</table>

Run Dimensions

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Check motor area to run area (ft²)</td>
</tr>
<tr>
<td>2</td>
<td>Check motor area to run depth (ft)</td>
</tr>
<tr>
<td>3</td>
<td>Check motor area to run width (W ft)</td>
</tr>
<tr>
<td>4</td>
<td>Check motor area to run width (W² ft²)</td>
</tr>
<tr>
<td>5</td>
<td>Check motor area to run width (W³ ft³)</td>
</tr>
</tbody>
</table>

Pool Dimensions

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Check motor area to pool area (ft²)</td>
</tr>
<tr>
<td>2</td>
<td>Check motor area to pool depth (ft)</td>
</tr>
<tr>
<td>3</td>
<td>Check motor area to pool width (W ft)</td>
</tr>
<tr>
<td>4</td>
<td>Check motor area to pool width (W² ft²)</td>
</tr>
<tr>
<td>5</td>
<td>Check motor area to pool width (W³ ft³)</td>
</tr>
</tbody>
</table>

River Reach Dimensions Summary Data

<table>
<thead>
<tr>
<th>Observation Team</th>
<th>Elevation of Floodplain Area (ft)</th>
<th>Elevation of Floodplain Area (ft)</th>
<th>Elevation of Floodplain Area (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team 1</td>
<td>42′</td>
<td>42′</td>
<td>42′</td>
</tr>
<tr>
<td>Team 2</td>
<td>41′</td>
<td>41′</td>
<td>41′</td>
</tr>
<tr>
<td>Team 3</td>
<td>40′</td>
<td>40′</td>
<td>40′</td>
</tr>
</tbody>
</table>

Worksheet B-32, Morphological Relations, including dimensions ratios (first field day)