<table>
<thead>
<tr>
<th>Item</th>
<th>Station</th>
<th>Back-Sight</th>
<th>Height of Instrument</th>
<th>Fore-Sight</th>
<th>Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5.62</td>
<td>3.81</td>
<td>102.89</td>
<td>101.85</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>13.2</td>
<td>4.70</td>
<td>101.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16.7</td>
<td>5.98</td>
<td>100.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>21.0</td>
<td>6.41</td>
<td>99.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>28.0</td>
<td>6.82</td>
<td>99.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>28.0</td>
<td>6.90</td>
<td>99.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>25.5</td>
<td>7.20</td>
<td>99.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>27.0</td>
<td>7.33</td>
<td>99.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>28.0</td>
<td>7.38</td>
<td>98.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>29.0</td>
<td>7.61</td>
<td>98.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>30.5</td>
<td>7.63</td>
<td>98.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>31.3</td>
<td>7.62</td>
<td>98.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>32.0</td>
<td>7.55</td>
<td>98.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>33.4</td>
<td>7.55</td>
<td>98.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>34.0</td>
<td>7.30</td>
<td>98.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>35.5</td>
<td>7.18</td>
<td>99.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>36.0</td>
<td>6.84</td>
<td>99.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>37.5</td>
<td>6.20</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>40.3</td>
<td>5.71</td>
<td>100.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>41.9</td>
<td>4.70</td>
<td>101.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>43.0</td>
<td>4.18</td>
<td>102.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>44.0</td>
<td>3.92</td>
<td>102.20</td>
<td>Top Of Bank</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>45.0</td>
<td>3.79</td>
<td>102.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>81.0</td>
<td>106.16</td>
<td>106.16</td>
<td>R(2XBF)</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td>R(2XBF) at 62'</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- BF width 28.7'
- Flood Prone: West
- 80.3
SURVEY DATA - LONGITUDINAL PROFILE 1

SITE:
Little Coonodagha Creek

Date:
4-12-16

Location:
Reach 3

Party / Notes:
Wendy, Brian, Elise, HUC:

<table>
<thead>
<tr>
<th>STATION</th>
<th>BS</th>
<th>HI</th>
<th>Thalweg</th>
<th>Water Surface</th>
<th>Bankfull</th>
<th>Low Bank</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>FS</td>
<td>Elevation</td>
<td>FS</td>
<td>Elevation</td>
<td>FS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FS</td>
<td>Elevation</td>
<td>FS</td>
<td>Elevation</td>
<td>FS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FS</td>
<td>Elevation</td>
<td>FS</td>
<td>Elevation</td>
<td></td>
</tr>
</tbody>
</table>

253 BM

82 Flag

Flag Bit

254 Bit

FLG-BT (3)

B-19

A34

Copyright © 2016 Wildland Hydrology

3.00 18.18
<table>
<thead>
<tr>
<th>Inches</th>
<th>PARTICLE</th>
<th>Millimeters</th>
<th>S/C</th>
<th>RIFFLE (1)</th>
<th>POOL (2)</th>
<th>COMPOSITE (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Date: 4/12/16</td>
<td>Date: 4/12/16</td>
<td>Date: 4/12/16</td>
</tr>
<tr>
<td>Silt/Clay</td>
<td>< .062</td>
<td></td>
<td></td>
<td>3</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>Very Fine</td>
<td>.062 - .125</td>
<td></td>
<td>1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>Fine</td>
<td>.125 - .25</td>
<td></td>
<td>2</td>
<td>2.6</td>
<td>10.6</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>.25 - .50</td>
<td></td>
<td>1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>Coarse</td>
<td>.50 - 1.0</td>
<td></td>
<td>1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>.04 - .08</td>
<td>Very Coarse</td>
<td>1.0 - 2</td>
<td></td>
<td>1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>.08 - .16</td>
<td>Very Fine</td>
<td>2.4</td>
<td></td>
<td>1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>.16 - .22</td>
<td>Fine</td>
<td>4.5</td>
<td></td>
<td>1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>.22 - .31</td>
<td>Fine</td>
<td>5.7 - 8</td>
<td></td>
<td>1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>.31 - .44</td>
<td>Medium</td>
<td>8.113</td>
<td></td>
<td>1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>.44 - .63</td>
<td>Medium</td>
<td>11.3 - 16</td>
<td></td>
<td>1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>.53 - .99</td>
<td>Coarse</td>
<td>16 - 22.6</td>
<td></td>
<td>1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>.89 - 1.3</td>
<td>Coarse</td>
<td>23.6 - 32</td>
<td></td>
<td>1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>1.3 - 1.8</td>
<td>Very Coarse</td>
<td>33 - 45</td>
<td></td>
<td>1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>1.8 - 2.5</td>
<td>Very Coarse</td>
<td>45 - 64</td>
<td></td>
<td>1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>2.5 - 3.5</td>
<td>Small</td>
<td>64 - 90</td>
<td></td>
<td>1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>3.5 - 5.0</td>
<td>Small</td>
<td>90 - 128</td>
<td></td>
<td>1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>5.0 - 7.1</td>
<td>Large</td>
<td>128 - 180</td>
<td></td>
<td>1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>7.1 - 10.1</td>
<td>Large</td>
<td>180 - 256</td>
<td></td>
<td>1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>10.1 - 14.3</td>
<td>Small</td>
<td>256 - 362</td>
<td></td>
<td>1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>14.3 - 20</td>
<td>Small</td>
<td>362 - 512</td>
<td></td>
<td>1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>20 - 40</td>
<td>Medium</td>
<td>512 - 1024</td>
<td></td>
<td>1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>40 - 80</td>
<td>Large-Very Large</td>
<td>1024 - 2048</td>
<td></td>
<td>1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>> 5.2</td>
<td>Bedrock</td>
<td></td>
<td></td>
<td>1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Stream Type:

Valley Type:

TOTAL: 20 - 99.7% 43 - 99.1% 103 - 99.5%
<table>
<thead>
<tr>
<th>Inches</th>
<th>PARTICLE</th>
<th>Millimeters</th>
<th>S/C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Silt/Clay</td>
<td>< 0.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Very Fine</td>
<td>0.02 - 0.125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fine</td>
<td>0.125 - 0.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>0.25 - 0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coarse</td>
<td>0.50 - 1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.04 - .08</td>
<td>Very Coarse</td>
<td>1.0 - 2</td>
</tr>
<tr>
<td></td>
<td>.08 - .16</td>
<td>Very Fine</td>
<td>2 - 4</td>
</tr>
<tr>
<td></td>
<td>.16 - .22</td>
<td>Fine</td>
<td>4 - 5.7</td>
</tr>
<tr>
<td></td>
<td>.22 - .31</td>
<td>Fine</td>
<td>5.7 - 8</td>
</tr>
<tr>
<td></td>
<td>.31 - .44</td>
<td>Medium</td>
<td>8 - 11.3</td>
</tr>
<tr>
<td></td>
<td>.44 - .63</td>
<td>Medium</td>
<td>11.3 - 16</td>
</tr>
<tr>
<td></td>
<td>.63 - .89</td>
<td>Coarse</td>
<td>16 - 22.6</td>
</tr>
<tr>
<td></td>
<td>.89 - 1.3</td>
<td>Coarse</td>
<td>22.6 - 32</td>
</tr>
<tr>
<td></td>
<td>1.3 - 1.8</td>
<td>Very Coarse</td>
<td>32 - 45</td>
</tr>
<tr>
<td></td>
<td>1.8 - 2.5</td>
<td>Very Coarse</td>
<td>45 - 64</td>
</tr>
<tr>
<td></td>
<td>2.5 - 3.5</td>
<td>Small</td>
<td>64 - 90</td>
</tr>
<tr>
<td></td>
<td>3.5 - 5.0</td>
<td>Small</td>
<td>90 - 128</td>
</tr>
<tr>
<td></td>
<td>5.0 - 7.1</td>
<td>Large</td>
<td>128 - 180</td>
</tr>
<tr>
<td></td>
<td>7.1 - 10.1</td>
<td>Large</td>
<td>180 - 256</td>
</tr>
<tr>
<td></td>
<td>10.1 - 14.3</td>
<td>Small</td>
<td>256 - 362</td>
</tr>
<tr>
<td></td>
<td>14.3 - 20</td>
<td>Small</td>
<td>362 - 512</td>
</tr>
<tr>
<td></td>
<td>20 - 40</td>
<td>Medium</td>
<td>512 - 1024</td>
</tr>
<tr>
<td></td>
<td>40 - 80</td>
<td>Large Very Large</td>
<td>1024 - 2048</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bedrock</td>
<td></td>
</tr>
</tbody>
</table>

Stream Type:

Valley Type:
Worksheet A-1. Field Form for Level II Stream Classification.

<table>
<thead>
<tr>
<th>Stream: Little cong cack eeg cack</th>
<th>Drainage Area: acres</th>
<th>12</th>
<th>mi²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basin:</td>
<td>Location:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twp. & Rge:</td>
<td>Sec. & Qtr.:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross-Section Monuments (Lat./Long.):</td>
<td>Date:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observers: Tegan 3</td>
<td>Landscape Type: Confined</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bankfull Width (W_{ba})
The surface width of the stream at bankfull stage elevation, in a riffle section.

| 28.7 ft |

Bankfull Mean Depth (d_{ba})
Mean depth of the stream channel cross-section, at bankfull stage elevation, in a riffle section (d_{ba} = A_{ba} / W_{ba}).

| 1.75 ft |

Bankfull Cross-Sectional Area (A_{ba})
Area of the stream channel cross-section, at bankfull stage elevation, in a riffle section.

| 50.32 ft² |

Width/Depth Ratio (W_{ba} / d_{ba})
Bankfull Width divided by Bankfull Mean Depth, in a riffle section.

| 16.4 ft/ft |

Bankfull Maximum Depth (d_{max})
Maximum depth of the bankfull channel cross-section, or distance between the bankfull stage and Thalweg elevations, in a riffle section.

| 2.93 ft |

Flood-Prone Area Width (W_{fp})
Width of the channel at an elevation that is twice the Bankfull Maximum Depth, measured perpendicular to the fall line of the valley in a riffle section.

| 80.3 ft |

Entrenchment Ratio (ER)
The Flood-Prone Area Width divided by Bankfull Width (W_{fp} / W_{ba}), in a riffle section.

| 2.8 ft/ft |

Channel Materials (Particle Size Index D_{50})
The D_{50} particle size index represents the median or dominant diameter of channel materials, as sampled proportionately from the channel surface between the bankfull stage and Thalweg elevations.

| 38 mm |

Average Water Surface Slope (S)
The elevation difference of water surface measurements over the stream length between two similar bed features (e.g., start of riffle to start of last riffle) for several riffle-pool or step-pool sequences, representing channel gradient.

| 0.0036 ft/ft |

Channel Sinuosity (k)
An index of channel pattern determined from stream length divided by valley length (SL / VL), or from valley slope divided by average water surface slope (S_{av} / S).

| 1.46 ft/ft |

See Classification Key (Figure A-2)
Worksheet A-2. Computations of velocity and discharge using various methods.

Bankfull VELOCITY & DISCHARGE Estimates

<table>
<thead>
<tr>
<th>Stream:</th>
<th>Little Conchochapee Creek</th>
<th>Location:</th>
<th>Reach 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td>April 12, 2016</td>
<td>Stream Type:</td>
<td>C-Y</td>
</tr>
<tr>
<td>Observers:</td>
<td>Team 3</td>
<td>Landscape Type:</td>
<td>Alluvial - Confined</td>
</tr>
<tr>
<td>HUC:</td>
<td>_______________</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INPUT VARIABLES

<table>
<thead>
<tr>
<th>Bankfull Riffle Cross-Sectional Area</th>
<th>A_{bfr} (ft^2)</th>
<th>Bankfull Riffle Mean Depth</th>
<th>d_{bfr} (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50.3</td>
<td></td>
<td>1.75</td>
</tr>
<tr>
<td>Bankfull Riffle Width</td>
<td>28.7</td>
<td>Wetted Perimeter</td>
<td>32.2</td>
</tr>
<tr>
<td>D_{84} Particle Size at Riffle</td>
<td>180 μm</td>
<td>D_{84} Particle Size in Feet</td>
<td>0.59 D_{84}</td>
</tr>
<tr>
<td>Bankfull Slope</td>
<td>0.003</td>
<td>Hydraulic Radius</td>
<td>1.56 R</td>
</tr>
<tr>
<td>Gravitational Acceleration</td>
<td>32.2</td>
<td>Relative Roughness</td>
<td>2.64 R/D_{84}</td>
</tr>
<tr>
<td>Drainage Area</td>
<td>12 mi^2</td>
<td>Shear Velocity $u^* = (gRS)^{1/2}$</td>
<td>0.43 u^*</td>
</tr>
</tbody>
</table>

ESTIMATION METHODS

1. Friction Factor/Relative Roughness

$$ \bar{u} = 2.83 + 5.66 \times \log \left(\frac{R}{D_{84}} \right) \frac{u^*}{f} $$

$$ \bar{u} = 1.49R^{0.63}S^{0.5} \frac{n}{n} = 0.03 $$

2. Roughness Coefficient: b) Manning's n from Stream Type (Fig. A-30)

$$ \bar{u} = 1.49R^{0.63}S^{0.5} \frac{n}{n} = 0.03 $$

2. Roughness Coefficient: c) Manning's n from Jarrett (USGS):

$$ \bar{u} = 1.49R^{0.63}S^{0.5} \frac{n}{n} = 0.39^{0.28}S^{0.16} $$

Note: This equation is applicable to steep, step, pool, high boundary roughness, cobbles- and boulder-dominated stream systems: i.e., for

3. Other Methods (Hey, Darcy-Weisbach, Chezy C, etc.)

3. Other Methods (Hey, Darcy-Weisbach, Chezy C, etc.)

4. Continuity Equations: a) USGS Gage Data

$$ \bar{u} = Q/A $$

4. Continuity Equations: b) Regional Curves

$$ \bar{u} = Q/A $$

Protrusion Height Options for the D_{64} Term in the Relative Roughness Relation (R/D_{64}) - Estimation Method 1

Option 1: For sand-bed channels: Measure 100 "protrusion heights" of sand dunes from the downstream side of feature to the top of feature. Substitute the D_{64} sand dune protrusion height in ft for the D_{64} term in method 1.

Option 2: For boulder-dominated channels: Measure 100 "protrusion heights" of boulders on the sides from the bed elevation to the top of the rock on that side. Substitute the D_{64} boulder protrusion height in ft for the D_{64} term in method 1.

Option 3: For bedrock-dominated channels: Measure 100 "protrusion heights" of rock separations, steps, joints or uplifted surfaces above channel bed elevation. Substitute the D_{64} bedrock protrusion height in ft for the D_{64} term in method 1.

Option 4: For log-influenced channels: Measure "protrusion heights" proportionate to channel width of log diameters or the height of the log on upstream side if embedded. Substitute the D_{64} protrusion height in ft for the D_{64} term in method 1.

Stream: Little Comus Creek
Location: Reach 3
Team: Team 3
Date: April 12, 2014
Drainage Area:

<table>
<thead>
<tr>
<th>Riffle Channel Dimensions</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bankfull Width (W_{bf}) (ft)</td>
<td>28.7</td>
<td></td>
</tr>
<tr>
<td>2. Bankfull Mean Depth (d_{bf}) (ft)</td>
<td>1.75</td>
<td></td>
</tr>
<tr>
<td>3. Width/Depth Ratio (W_{bf} / d_{bf})</td>
<td>9.79</td>
<td></td>
</tr>
<tr>
<td>4. Bankfull Cross-Sectional Area (A_{bf}) (ft^2)</td>
<td>50.32</td>
<td></td>
</tr>
<tr>
<td>5. Bankfull Maximum Depth (d_{max}) (ft)</td>
<td>2.93</td>
<td></td>
</tr>
<tr>
<td>6. Width of Flood-Prone Area (W_{fp}) (ft)</td>
<td>8.63</td>
<td></td>
</tr>
<tr>
<td>7. Entrenchment Ratio (ER) (W_{fp} / W_{bf})</td>
<td>2.8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Channel Pattern</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Belt Width (W_{bt}) (ft)</td>
<td>12.50</td>
<td>7.5</td>
<td>18.0</td>
</tr>
<tr>
<td>9. Meander Width Ratio (MWR) (W_{bt} / W_{bf})</td>
<td>Mean</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Stream Meander Length (L_m) (ft)</td>
<td>Mean</td>
<td>1250</td>
<td>600</td>
</tr>
<tr>
<td>11. Meander Length Ratio (MLR) (L_m / W_{bf})</td>
<td>Mean</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Linear Wavelength (λ) (ft)</td>
<td>Mean</td>
<td>163</td>
<td>60</td>
</tr>
<tr>
<td>13. Bankfull Width (λ / W_{bf})</td>
<td>Mean</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Radius of Curvature (R_c) (ft)</td>
<td>Mean</td>
<td>70</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensionless Ratios</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Radius of Curvature to Bankfull Width (R_c / W_{bf})</td>
<td>Mean</td>
<td>2.61</td>
<td></td>
</tr>
</tbody>
</table>

Channel Particles

Representative Pebble Count
16. D_{16} (mm)	12 mm
17. D_{50} (mm)	25 mm
18. D_{60} (mm)	28 mm
19. D_{94} (mm)	120 mm

Active Bed Riffle Pebble Count
22. D_{16} (mm)	25 mm
23. D_{35} (mm)	35 mm
24. D_{50} (mm)	48 mm
25. D_{94} (mm)	180 mm

Classification
| 28. Sinuosity (k) | 1.46 |
| 29. Average Water Surface Slope (S) | 0.0037 |

Stream Type
| 30. Stream Type | C4/I |

Landscape Type
| 31. Landscape Type | Confluval |

Velocity & Discharge
32. Friction Factor (u / u^*)	0.85
33. Relative Roughness (R / D_{94})	2.64
34. Manning's 'n' from Friction Factor / Relative Roughness	0.03
35. Manning's 'n' from Stream Type	0.031
36. Estimated Bankfull Mean Velocity (u_{bf}) (ft/sec)	4.06
37. Estimated Bankfull Discharge (cfs)	209.5

Estimation Method Selected for Velocity & Discharge
| 38. Estimation Method Selected for Velocity & Discharge | Manning's 'n' from Friction Factor / Relative Roughness |