Your Boss Just Called:
How to Create an Effective Process for AM
Chapter 13
Developed by: Steve Morey, Michael C. Runge, and Angela Romito

Session Objective: By the end of this session, participants will be able to:

- Explain the attributes of decisions that promote follow-through
- Design an effective adaptive management process

Good decisions get implemented

- The main way to get a decision implemented is to make a good decision
 - Making the decision maker look good
 - There are things about SDM and Adaptive Management that can help achieve that compelling decision

Traps That Reduce Decision Quality

- Not involving the real decision makers
- Solving the wrong problem
- Unbalanced working group (e.g., too many technical advisors)
- Lack of creative and different alternatives
- Inability to deal with competing objectives
- Too much time on refinement of unimportant details
- Not involving those who implement the decision
- Lack of credibility of content and analysis

Outline

- Diagnosing the problem
- The project team & other participants
- The value of prototyping
- Feedback with the decision maker
- Documentation
- Communication – the core decision
- Design and communicate the process
Diagnosing the Decision Problem

- Should I work on this or pass?
- Your first task—the 0th prototype—is problem formulation
- You’re looking for the core structure of the decision before you’ve even started
- Ask all the questions we outlined earlier, including:
 - Who is the decision maker?
 - What has to be decided?
 - What impedes the decision?
- Run a quick PrOACT analysis in your own head
- Now, is this adaptive management?
 - Is the decision iterated?
 - Is the problem rooted in scientific uncertainty? Or is this really about disputed objectives?
 - See the criteria in the DOI Technical Guide
- Are the needed resources & decision makers available?
- Decision makers may be convinced this is a good adaptive management decision problem…even when it’s not.
- The point is that your initial diagnosis is what’s going to lead you to next steps, like
 - Building a core team
 - Identifying and engaging the decision maker(s)
 - Developing the next prototype
Participants in the Process

The Project Team

- A small group (1 – 5)
 - Overall team leader
 - Modeler
 - Key technical staff
 - Facilitator?

- Project team attributes
 - Enjoy making the decision maker look good
 - Enjoy working together
 - Skilled in a mix of areas: science, policy, decision analysis
 - Access to the decision maker
 - Can see the big picture

Important Relationships

- The Project Team needs to engage
 - Decision maker
 - Stakeholders & Partners
 - Those who'll have to implement the decision
 - Experts

The Decision Maker

- Who’s the decision maker?
 - The person with the authority and resources to implement the decision
 - This can be difficult to diagnose

- Project team needs easy access to the decision maker
- Routine feedback, at all phases, between the project team, decision maker, stakeholders, experts and those who have to implement the decision is essential. No “wall of virtue”.
Whose Values Matter?

- The person with the authority and resources to implement the decision
- Unrealistic to assume decision makers fully understand their objectives (see Keeney 1996)
- Sometimes the decision maker wants other participants’ objectives to be included
 - This is bad if they don’t really want other objectives
 - Routine feedback with the decision maker is essential here
 - Participants want to be useful, not used

Stakeholders: Inclusiveness and the Compelling Decision

- Including more people in the decision can add some things (objectives, creative alternatives, fairness, ownership)
- Risks related to inclusiveness (e.g., logistics, personalities)
- Finding the sweet spot, an art form
 - Criteria
 - Stakeholder analysis
- Stakeholders want to feel useful, not used
- Inclusiveness can’t overcome a bad decision
 - Working with the wrong decision maker
 - Decision doesn’t flow from the objectives
 - Disputes over science v. values

Working with Experts

- Outside experts help with models or provide information that isn’t available
- Expert credibility is important to decision makers
- Modeler often on the project team
- Definition and attributes (see Ayyub 2001)
 - Extensive experience
 - Professional recognition by peers as an expert
 - Ability to work and communicate in a group setting.
- Other attributes
 - Multiple points of view/approaches (for groups)
 - Trust
 - Understand role
 - Can deal with management objectives
Facilitator role

- Is there one?
- Eliciting objectives, alternatives
- Expert workshops (see Ayyub 2001)
- Decision workshops
- Do you just need a time keeper or one that is fully immersed in the decision problem and has a decision analysis background?

Prototyping

and Feedback from the Decision Maker

Prototyping

- Round 1: A Rapid Prototype
 - Develop a full, but coarse, prototype as fast as you can
 - Focus on the key elements

- Include all the elements of a structured decision, but keep them very simple (find the skeleton of the problem)

- Assess the first prototype – feedback with the decision maker
 - Is this the right problem?
 - Does the framework make sense?

- Sensitivity analysis—where is the most important place to focus work?

Prototyping: Round 2 and Beyond

- Go to a larger group
 - Using the prototype as a rehearsal (restarting)
 - Using the prototype as a starting point (revising)

- What will you examine?
 - Changing the structure: reframing
 - Revising the objectives: stakeholder involvement
 - Developing more alternatives: engineering
 - Improving the models: research (empirical or elicited)
 - Enhancing the analysis: optimization

- Examine, test, scrutinize. Revise, repeat.
- Sometimes these needs can be anticipated early in the process, sometimes they emerge without warning
Involve the Decision Maker

- The whole purpose is to aid the decision maker
 - Be deliberate about involving the decision maker(s) throughout the process
- Each prototype provides a strategic juncture for feedback
 - Getting the problem right
 - Getting the risk tolerance right
 - Objectives – What is it you really want this decision to do for you?
- Expect this all to evolve as the prototypes move forward

Documentation & Communication

Documentation

- People say using a SDM approach will help with documentation
- It’s not going to happen on its own
 - Lot’s of decisions in a decision problem: which ones need to be documented?
 - choice of experts, objectives, alternatives, choice of models, any elicitation elements, decision thresholds
- Rationale for the decision – most important
- Is there going to be a report or paper?

Communication

- Everyone vested in the decision needs to see the core decision structure
- Focus on the core objectives, alternatives, consequences, and trade-offs and the decision itself.
- The decision maker should be able to convey to the stakeholders and other interested parties:
 - How the decision was made
 - How you connected all the dots
 - What values were expressed in the decision
 - How trade-offs were managed.

Design and Communicate the Process

- Design the process deliberately
- Outline the steps (a roadmap)
- Be clear who is involved and at what stage
- Especially be clear when the decision-maker(s) and stakeholders will be consulted
- Plan to be adaptive
- Communicate the process, to manage expectations
Dealing with Potential Impediments

Dealing with Institutional Impediments

- Problem: Poor problem statements
 - Solution: Use the PrOACT approach

- Problem: Framing hidden objectives as scientific uncertainty
 - Solution: Define objectives first, then work on technical issues

- Problem: Inability to garner buy-in from important stakeholders
 - Solution 1 (bottom-up): Convince decision implementers that it helps them to do (and communicate) the job in a transparent fashion
 - Solution 2 (top-down): Show decision-makers it helps the bottom line

- Problem: Co-opted definitions of SDM and ARM (examples: “adaptive” meaning flexible, trial-and-error, learning by doing, that is, all reactive approaches)
 - Solution: Use decision-theoretic approach (see McFadden et al. 2011)

Dealing with Technical Impediments

- Problem: Difficulty in solving large, complex problems
 - Solution: Use the PrOACT approach to simplify the problem into modular steps

- Problem: Communication of results and approach to non-statisticians
 - Solution: Describe results and approach using familiar examples, and emphasize conceptual and graphical over mathematical depictions

Literature cited