Outline

- Context
- Decisions through time
- Dynamic programming
- Structural uncertainty
 - Passive and active adaptive management
- Summary points
Context

- Here, we focus on *dynamic* decision processes

![Diagram](Graphic: Fred Johnson)
Context

- We also focus on making decisions under *uncertainty*
Why are these contexts important?

- Decisions made today have impacts on future states, future decisions, and future returns
 - Opportunities created, opportunities lost
- Uncertainty reduces management performance over the long term
- However, recurrent decisions present an opportunity to reduce uncertainty
Dynamic decision making

How do we make a good decision?
The “decision tree”

- Discrete set of possible actions
- Each action leads to an outcome
 - Outcomes are probabilistic events
 - Reflects uncertainties due to the environment and partial control
- Each consequence (action × outcome combination) has a value (utility)
Expected utility is greatest for ‘Yes’ decision.

- Expected Utility
- Model
- Outcome
- Utility

<table>
<thead>
<tr>
<th>Decision</th>
<th>Yes</th>
<th>No</th>
<th>Native Community Established</th>
<th>Native Community Not Established</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>0.7</td>
<td>0.3</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Expected Utility</td>
<td>80</td>
<td>10</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

Probabilities that arise from the random environment.

Quantities that reflect the value of each consequence.
Generalizations needed

For dynamic decision making, we will generalize the decision tree in 2 ways:

- **Time**
 - Decisions are linked through time
 - Today’s decisions have consequences for future decision making

- **Structural uncertainty**
 - Probabilities of outcomes are themselves uncertain
 - Use decision making to resolve structural uncertainty over time
Generalization 1: Time
Generalization 1: Time

- Adaptive management only works in a context of sequential decision making
 - In time:
 - Releases of animals to establish a population
 - Harvest regulations to maximize cumulative harvest
 - In space:
 - Thinning of forest blocks to obtain desired understory conditions
 - Hydrologic re-engineering to restore wetland communities
Dynamic decision making – some terms

- **State variables**
 - Measureable attributes of the resource that informs “where we are”
 - May be more than one, e.g. population size and habitat condition
 - *Partial observability* – hampers management performance and ability to learn
Dynamic decision making – some terms

- **Return (or reward)**
 - Value provided for a specific action taken or for arriving in a specific state

- **Model**
 - Mathematical description of system dynamics that links states, actions, and returns
The system moves from state to state

<table>
<thead>
<tr>
<th>State Level</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>X_{10}</td>
<td></td>
</tr>
<tr>
<td>X_9</td>
<td></td>
</tr>
<tr>
<td>X_8</td>
<td></td>
</tr>
<tr>
<td>X_7</td>
<td></td>
</tr>
<tr>
<td>X_6</td>
<td></td>
</tr>
<tr>
<td>X_5</td>
<td></td>
</tr>
<tr>
<td>X_4</td>
<td></td>
</tr>
<tr>
<td>X_3</td>
<td></td>
</tr>
<tr>
<td>X_2</td>
<td></td>
</tr>
<tr>
<td>X_1</td>
<td></td>
</tr>
</tbody>
</table>

$A_1 \rightarrow r_1$

$A_2 \rightarrow r_2$

$A_3 \rightarrow r_3$

$A_4 \rightarrow r_4$

and so on…
Implications of sequential decisions

- Decisions should account not only for the immediate return, but for all future returns according to where the system is driven and all decisions that follow
 - Myopic decision making focuses only on the immediate future
 - Future opportunities closed off or lost
 - Unsustainable management
Dynamic optimization

- Goal is to find an optimal trajectory of decisions through time that provides greatest expected accumulated return
 - Exact approaches
 - Approximate approaches
Important to note…

- Optimization and optimal management are **not** technical requirements for adaptive management
 - Learning under AM can proceed by any strategy to select a decision
 - *But*, optimization is the only recourse for selecting actions that are most efficient for pursuing the resource objective
 - i.e., may be a trade-off between efficiency (conservation delivery) and practicality/feasibility
Exact approaches

- Continuous-time approaches
 - For systems suitably represented in continuous time domain by simple models and few controls
 - Calculus of variations
 - Maximum principle
 - Continuous-time dynamic programming

- Discrete-time approaches
 - More complex systems, or those not well represented in continuous-time domain
 - Dynamic linear programming
 - Discrete-time dynamic programming (DP)
Dynamic programming (DP)

- Finds a trajectory of actions through discrete steps of time that maximizes an objective defined over the time horizon
 - Terminal value – a return that is realized only at the end of the time horizon (i.e., a salvage or liquidation value)
 - Accumulated value – returns that occur at each decision period and are summed
The time frame

- Time interval corresponds to the interval of the recurring decision
 - Often annual, but can be shorter or longer as appropriate

- Time horizon
 - Fixed & short-term
 - Indefinite, or very long
Fixed, short-term time horizon

- Appropriate where a desired end state is to be achieved within a specified time limit
 - Terminal value formulation
Fixed, short-term time horizon

- **Examples:**
 - “Determine the optimal 10-year sequence of actions to achieve a targeted plant community composition”
 - “Determine the optimal 20-year sequence of releases to establish a breeding population with high probability of persistence”
Indefinite, or very long time horizon

- Appropriate where a recurrent reward is sought and long-term resource sustainability is at least an implied objective
 - Accumulated value formulation

![Diagram showing the state, action, and return sequence with many time steps](image)
Indefinite, or very long time horizon

- **Examples:**
 - “Determine optimal sequence of regulatory actions to maximize expected cumulative harvest of waterfowl over an indefinite time horizon”
 - “Determine optimal sequence of water releases to sustain targeted diversity of an aquatic community over 100 years”

![Diagram showing a sequence of states and actions with many time steps](image-url)
Influence of the time horizon

- A thought exercise
 - You are a manager at a forest refuge where a threatened bird occurs, and you make annual forest harvest decisions intended to sustain the population through the creation of mid-successional forest habitat
 - However, you are informed that next year, the refuge will be sold, the forest cut, and the resident population translocated
 - To best support the population until that happens, what would likely be your approach to forest management this year?
 - Scenario change: Suppose instead that you know the refuge will be liquidated 30 years from now – how would that knowledge affect your decision this year?
Discounting

- Returns in the future have less value relative to the same return today
 - May be appropriate for problems involving monetary return or where future returns are uncertain
 - High discounting is incompatible with notions of sustainability
 - But low discounting may be useful in finding optimal solutions without severely undervaluing the future

\[\text{State (1)} \rightarrow \text{Action (1)} \rightarrow \text{State (1)} \rightarrow \text{Return (1)} \]
\[\text{State (2)} \rightarrow \text{Action (2)} \rightarrow \text{State (2)} \rightarrow \text{Return (2)} \]
\[\text{State (3)} \rightarrow \text{Action (3)} \rightarrow \text{State (3)} \rightarrow \text{Return (3)} \]
\[\text{State (T-1)} \rightarrow \text{Action (T-1)} \rightarrow \text{State (T-1)} \rightarrow \text{Return (T-1)} \]
\[\text{State (T)} \rightarrow \text{Action (T)} \rightarrow \text{State (T)} \rightarrow \text{Return (T)} \]

Many time steps
What are we trying to do?

Find these…

State (1) \[\rightarrow\] Action* (1) \[\rightarrow\] State (2) \[\rightarrow\] Action* (2) \[\rightarrow\] State (3) \[\rightarrow\] Action* (3) \[\rightarrow\] State (4) \[\rightarrow\] Action* (4) \[\rightarrow\] State (5) \[\rightarrow\] Return (5)

Terminal value formulation

…that makes this as large as possible

OR

Find these…

State (1) \[\rightarrow\] Action* (1) \[\rightarrow\] State (2) \[\rightarrow\] Action* (2) \[\rightarrow\] … \[\rightarrow\] Action* (T-1) \[\rightarrow\] State (T-1) \[\rightarrow\] State (T) \[\rightarrow\] Return (1) + Return (2) + … + Return (T-1) + Return (T)

Accumulated value formulation

…that makes this sum of (discounted) values as large as possible
Need to account for system dynamics

- Note that the terminal reward or the time-specific rewards are dependent on the states that the system passes through
 - Must account for these transitions
- Bellman’s Principle of Optimality (1957)
 - A solution based on a recursive argument
 - Bellman suggested a way forward … by working backwards!
Walk-through of a simple DP problem

- Managing a single patch of native prairie:
 - A single state variable with 3 levels:
 - Patch is (1) mostly native composition, (2) mixed native-invasive, or (3) mostly invaded
 - 4-year decision interval
 - 2 decision alternatives at each interval:
 - Defoliate every other year for 4 years, or rest
 - Rewards
 - Certain action-outcome combinations are more favorable than others
A simple model

Start from any of 3 prairie states

Stochastic transition to a new state following decision

State 1
Mostly Native

State 2
Native / Invaded

State 3
Mostly Invaded

Action

Defoliation decision is to be made

Rest

Defoliate

0.3

0.5

0.2

0.1

0.5

0.4

0.5

0.2

0.1

0.3

0.5

0.2

0.1

0.3

0.5

0.2

0.1

0.3

0.5

0.2

0.1

0.3

0.5

0.2

0.1

0.3

0.5

0.2

0.1

0.3

0.5

0.2

0.1

0.3

0.5

0.2

0.1

0.3

0.5

0.2

0.1

0.3

0.5

0.2

0.1

0.3

0.5

0.2

0.1

0.3

0.5

0.2

0.1

0.3

0.5

0.2

0.1

0.3

0.5

0.2

0.1

0.3

0.5

0.2

0.1

0.3

0.5

0.2

0.1

0.3

0.5

0.2

0.1

0.3

0.5

0.2

0.1

0.3

0.5

0.2

0.1

0.3

0.5

0.2

0.1

0.3

0.5

0.2

0.1

0.3

0.5

0.2

0.1

0.3

0.5

0.2

0.1

0.3

0.5

0.2

0.1

0.3

0.5

0.2

0.1

0.3

0.5

0.2

0.1

0.3

0.5

0.2

0.1

0.3

0.5

0.2

0.1

0.3

0.5

0.2

0.1

0.3

0.5

0.2

0.1
Returns and cumulative values

State 1
Mostly Native

State 2
Native / Invaded

State 3
Mostly Invaded

Defoliate

Accrued values for being in each state

Accrued values for each transition
(relative satisfaction / 10=happiest)

Return for each transition
(relative satisfaction / 10=happiest)

Action

Rest

V_1

V_2

V_3

t

$t+1$
Recursive feature of objective function

- For each system state, find decision that maximizes

\[V_{t0} = y_{t+1} + y_{t+2} + y_{t+3} + \ldots + y_T \]

Current-year return (year \(t \)) + Cumulative return by all future actions (year \(t+1 \) and beyond)
Recursive feature of objective function

- For each system state, find decision that maximizes

\[V_{t0} = y_{t+1} + y_{t+2} + y_{t+3} + \ldots + y_T \]

- Current-year return (year \(t \))
- Current-year return (year \(t+1 \))
- Cumulative return by all future actions (year \(t+2 \) and beyond)
For each system state, find decision that maximizes $V_{t0} = y_{t+1} + y_{t+2} + y_{t+3} + \ldots + y_{T}$

To solve for optimal decisions, construct the policy one decision at a time by working backwards from the future to the present.
Simple model: Steps in optimization

1. Assign values for having arrived at each possible state at end of time frame T
 - Levels of satisfaction for each state

State 1
Mostly Native
10

State 2
Native / Invaded
5

State 3
Mostly Invaded
0

T
Simple model: Steps in optimization

2. Move backwards 1 period – for each decision (D or R) at time $T-1$, determine return (y) and probability of transition (p) to each state at T.

- **State 1**: Mostly Native
 - D: $y(6)$, $p(0.3)$
 - R: $y(10)$, $p(0.1)$

- **State 2**: Native / Invaded
 - D: $y(3)$, $p(0.5)$
 - R: $y(7)$, $p(0.5)$

- **State 3**: Mostly Invaded
 - D: $y(0)$, $p(0.2)$
 - R: $y(4)$, $p(0.4)$

Diagram:

- $T-1$:
 - D: $y(6)$, $p(0.3)$
 - R: $y(10)$, $p(0.1)$

- T:
 - D: $y(3)$, $p(0.5)$
 - R: $y(7)$, $p(0.5)$
 - D: $y(0)$, $p(0.2)$
 - R: $y(4)$, $p(0.4)$
Simple model: Steps in optimization

3. Calculate *average value of each decision*: Add current return y to value associated with each state at T, then sum (weighted by p) over state outcomes.
Simple model: Steps in optimization

4. For each state at $T-1$, identify action yielding greatest expected accumulated return
Simple model: Steps in optimization

5. Store the optimal action and its state-dependent value
 • Compute optimal values for other states

State 1
Mostly Native

State 2
Native / Invaded

State 3
Mostly Invaded
Simple model: Steps in optimization

6. Return to step 2; repeat process through time frame
 • More iterations of this process may reveal a stationary policy, i.e., decisions sensitive only to state, not time
DP: Summary of steps

1. Assign values for arrival at end-of-time states
2. Move back 1 time step; determine returns from each action × outcome combination
3. Calculate average value of each decision at time step
4. Identify optimal action at each state at time step
5. Store optimal actions and state-dependent value
6. Repeat (2)-(5) through time frame
DP: key points

- DP is merely a chain of decision trees
- Once a state’s optimal value is computed at any time step, the potential paths forward in time from that state are irrelevant
- Sufficient iterations may yield a stationary optimal policy, where decisions are dependent on system state but not on time
- DP provides closed-loop control
 - Today’s optimal action reflects feedback inherited from the system dynamics
Example: Invasive species control

- Objective: Minimize discounted sum of damage, monitoring, & treatment costs
- State: Manager’s relative confidence in low, medium, or high levels of infestation (invasion state is not fully observable except through monitoring)
- Actions: Do nothing (1), monitor only (2), treat only (3), treat + monitor (4)
Other examples

- **Harvest**
 - Anderson (1975) Ecology 56:1281-1297

- **Reintroduction / translocation**

- **Habitat management / Invasive species control**

- **Human disturbance**
Approximate approaches

- DP suffers from “Curse of Dimensionality”
 - Problem size explodes with increasing number of states, decisions, and random variables
 - Computational limits are quickly met
- Some approximate alternatives may be “good enough”
 - Simulation-optimization
 - Reinforcement learning
 - Heuristic techniques
- Again: bona fide optimization is not a technical requirement for adaptive management
Generalization 2: Structural Uncertainty
Generalization 2: Structural Uncertainty

- We are often uncertain about basic dynamics of the system
 - What is the probability of transitioning to a desired community state given that burning is conducted?
 - What is the average spawning response given control of a predator?
 - What is the form of the relationship between season length and harvest rate?

- Recurrent decision making provides an opportunity to learn and adapt our management approach
We earlier considered a decision problem in which carrying out the management action favored the desired outcome, compared to no action

- \(P(\text{native} \mid \text{hydrology restoration}) = 0.7 \)
- \(P(\text{native} \mid \text{no action}) = 0.5 \)

But suppose that this is uncertain or in dispute; that is, a credible claim is made that restoring hydrology has no better chance than doing nothing?
Decision tree, revisited

Expected Utility	Model	Outcome	Utility
H1: 59	Hypothesis 1	Native Community Established	80
	Native Community Not Established	10	
Restore Hydrology?	Yes	Native Community Established	100
	Native Community Not Established	0	
	No	Native Community Established	100
	Native Community Not Established	0	
H1: 50

Expected Utility Model Outcome Utility
Decision tree, revisited

Expected Utility	Model	Outcome	Utility
H2: 45	Yes	Native Community Established	80
	Native Community Not Established	10	
H2: 50	No	Native Community Established	100
	Native Community Not Established	0	

Hypothesis 2

Restore Hydrology?
Here, uncertainty matters

- The optimal action depends on the model (hypothesis) we choose
 - If we believe in H1, ‘Restore’ action is optimal (expected utility = 59)
 - If we believe in H2, ‘Do nothing’ action is optimal (expected utility = 50)
Competing models

- Do we even have to choose one model over another?
 - No – Our strategy will be to compute expectations of the utilities with respect to relative confidence in the models, and choose the action with greatest expected utility
 - Let’s assume 50:50 relative confidence in the models
 - Aside: other strategies are available for one-time, non-dynamic decisions
 - e.g., minimax, info-gap theory
Incorporating model uncertainty

Hypothesis 1: 59
Hypothesis 2: 45

Decision

Expected Utility

Model

Outcome

Utility

Native Community Established

80

Native Community Not Established

10

Native Community Established

100

Native Community Not Established

0

Model Belief Weight

H1
0.5

H2
0.5
Structural uncertainty in DP

- Approach #1 (passive):
 - Augment the decision tree with model belief weights, chain the trees together as before, and keep belief weights unchanged over the time steps
 - Model uncertainty is acknowledged in the optimization, but not in a way that recognizes that it can change over time
 - In application, it does change over time as decisions are made, outcomes are compared to predictions, and model weights are updated
Structural uncertainty in DP

- Strategy for approach #1:
 1. Perform DP using today’s model weights throughout all time steps, pretending as though weights will never change
 2. Make a decision, carry out action, and update model weights
 3. Repeat (1) and (2) at next decision opportunity

- Learning is *passively* obtained as an *unplanned* byproduct of decision making
Passive adaptive management

Current period (t)

Next period (t+1)

Next period (t+2)
Structural uncertainty in DP

- Approach #2 (active):
 - Alternatively, explicitly account for expected change in model weights as decisions are made
 - We track changing system knowledge (in the form of model weights) as an information state, alongside the physical system state
 - We use a formulation of DP that incorporates Bayes’ Theorem as the model of dynamics for the information state
 - The optimization anticipates that knowledge about the system will change in response to decisions made through time and the responses they are expected to generate
 - Learning is actively obtained as a planned outcome of decision making
 - Dual control: learning is pursued to the extent that it improves long-term management
Active adaptive management

Information State

System State
Passive vs Active

- Both approaches provide closed-loop control of the system state, but CL control of the information state is only achieved through active AM
- The *dual control* problem: Balancing the pursuit of management objectives against the need for information that tells us how the system works
 - Active AM provides a balanced solution that proposes informative (but not reckless) actions when system uncertainty is high
 - Learning (information) is pursued only to the extent that it improves management
 - Passive AM also pursues the management objective, but under the simplifying assumption that understanding will never change
Example: Forest harvesting for old-growth habitat

<table>
<thead>
<tr>
<th>Forest State</th>
<th>Model Weights</th>
<th>Optimal Harvest Amounts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F1 (Fast)</td>
<td>F0 (Med)</td>
</tr>
<tr>
<td>Mostly young forest</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Mostly old forest</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td></td>
<td>1/3</td>
<td>1/3</td>
</tr>
</tbody>
</table>

- **Passive**: 0.04 - 0 - 0
- **Active**: 0.08 - 0 - 0

Moore & Conroy (2006)
Examples

- **Passive AM**
 - *Optimal predator control*: Martin et al. (2010) Biological Conservation 143:1751-1758

- **Active AM**
Experimentation and AM

- Neither passive nor active AM defers pursuit of the management objective for the sake of learning
 - They both focus on the management objective, but they use different tactics to account for uncertainty

- In contrast, experimentation places all emphasis on learning
 - Pursuit of management returns is set aside in favor of pursuing information
Experimentation and AM

- Considerations for integrating experimentation into AM
 - Maintain focus on fundamental objectives (learning is a means objective)
 - Exploit opportunities for targeted experimentation (i.e., a sample of spatial units)
 - Sequential active adaptive management
 - Alternating cycles of experimentation and passive adaptive management
 - Inferences based on model selection and parameter estimation are more useful than classical hypothesis tests
Summary points

- Decisions made in dynamic systems have consequences for future decision making
 - Today’s decision influences future states and future rewards
 - Optimal decision making should account for future system dynamics, and if possible, uncertainties about those dynamics
Summary points

- Dynamic programming seeks optimal state-dependent decision policies
 - Short-term or indefinite time horizon
 - Terminal value or accumulated value
 - Uses recursion in a reverse-time perspective to account for future system dynamics
 - Solution is achieved by working through a chain of decision trees
Summary points

- Structural uncertainty may matter to the decision
 - We can still make an optimal decision by computing expected decision values with respect to model confidence weights
 - Can approach this in two ways in DP:
 - Passive AM – uncertainty is recognized, but assumed to remain static through time
 → Better management occurs as an unplanned byproduct of decision making
 - Active AM – uncertainty is modeled as a dynamic state through time
 → Decision making itself can be used to elicit information that would enable better management to evolve